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Abstraet--A theoretical model for panicle deposition on vertical walls is proposed. The model shows that 
the particle deposition massflux depends on the dimensionless particle relaxion time t + , a dimensionless 
group Ei representing Brownian motion and the dimensionless group Mi representing elcctrostatical 
forces, as well as a new dimensionless group b,v/u s, and the tube Reynolds number. The model represents 
experimental data on particle deposition ~ very well, and shows how variations in gv/u~ can reproduce 
variations in deposition rates similar to those reported in the literature. Outside the Brownian diffusion 
regime the particle deposition is shown to be controlled by a complex interaction between turbulent 
migration, dispersion and transversal lift forces. 

Key Words: particle deposition, turbulence 

INTRODUCTION 

The deposition of particles or droplets from turbulent gas flows has been studied extensively during 
the last 20 years. The understanding and prediction of the deposition massflux is of great interest 
in areas like pollution control, gas cleaning, design of industrial reactors or transport of particles 
or droplets in two-phase flow systems. Due to the great interest in the subject, several hundred 
articles and papers have been published. The deposition of particles on vertical walls is believed 
to be caused by Brownian diffusion and a turbulent inertial deposition. The Brownian deposition 
is only of importance for very small (submicron) particles. When the particles become larger, their 
Brownian diffusivity becomes smaller, but  their inertia will result in an increased relative Velocity 
between particles and the turbulent fluctuations of the gas. 

The increased relative velocity resulting from increased particle inertia is then believed to be the 
mechanism which drives the heavy particles through the quiet "laminar sublayer" which is located 
extremely close to the wall. 

The literature on the subject has been reviewed by Papavergos & Hedley 0984). According to 
their review the scatter in experimental data is extreme, and the maximum deposition rates are 
between 1 and 3 orders of magnitude larger than the minimum deposition rate when dimensionless 
quantities are employed. One major reason for the large scatter in the data is that the adhesive 
forces between particles and walls have not been studied and reported. Davies (1983) points out 
that the surface roughness is another important factor which can enhance the deposition, but 
unfortunately most experimental works do not report the condition of the surface. 

The deposition process has been described theoretically using three different approaches. The 
approach most commonly applied employs experimental wall laws for the turbulent diffusivity 
through the boundary layer. The particle diffusivity is set equal to the turbulent diffusivity of 
momentum, and the concentration equation is solved through the boundary layer. This has been 
done by Friedlander & Johnstone (1957), Kneen & Strauss (1969), Owen (1960), Beal (1970) and 
Davies (1966). In order to obtain agreement between theory and experimental data the workers 
had to adjust their boundary conditions. The best results were obtained when the particle 
concentration was set to zero at a particle stopping distance from the wall. The stopping distance 
is given by a product of the particle relaxation time tp = (ppd2)/18/z and some characteristic 
velocity. Here, pp is the particle density, dp is the particle diameter and /z is the gas viscosity. 
However, there is no theoretical justification for this choice. Davies (1966) did not follow the 
stopping distance concept completely, as he accounted for the fact that the turbulent fluctuations 
normal to the wall are damped as the wall is approached. A small particle must be closer to the 
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wall than a larger particle if the wall is to be reached in one free flight. Therefore, Davies (1966) 
correctly introduced an initial velocity, for the particles free flight, which was reduced for reduced 
particle inertia. Unfortunately, this approach could not reproduce the experimental data. 

A second approach was introduced by Liu & Ilori (1974). They introduced an additional artificial 
turbulent dispersion of particles, so the particle diffusivity was composed of two added terms. The 
first term was the standard fluid turbulent viscosity, while the new, second term was the turbulent 
viscosity multiplied by the ratio te/ZL. The Lagrangian timescale ZL of the turbulent fluctuations 
was estimated to drop to zero at the wall, while the particle relaxation time tp is constant. Hence, 
the new term strongly exceeds the fluid's diffusivity as the wall is approached. This model seemed 
to reproduce experimental data (Liu & Agarwal 1974) satisfactorily, but the model lacks a stringent 
physical and mathematical deduction of the additional particle diffusivity. 

A third group of models is based on a random walk or a probabilistic description of the particle 
movement in the boundary layer. Such theories has been presented by Hutchinson & Hewitt (1971) 
and Reeks & Skyrme (1976). These theories can reproduce some experiments very well, but the 
models have introduced model specific thickness of the laminar sublayer. The fluid fluctuations 
which cause the particles to penetrate the laminar sublayer are taken from regions far from the 
laminar sublayer, and this is a major weakness of these theories. 

Cleaver & Yates (1975) developed a theory for particle deposition based on the bursts and 
ejections of turbulent fluid into the laminar sublayer. They did not account for the finite dispersion 
in the core flow, but even so they reproduced experimental data acceptably. The model does not 
assume any artificial boundary conditions and can therefore claim to be fundamentally founded. 
Papavergos & Hedley (1979) adopted a synthesis of the model of Cleaver & Yates (1975) and 
Hutchinson & Hewitt (1971), and they obtained good agreement with their experimental data. 
However, their model suffers from the weakness of the Hutchinson model discussed above. 

In a completely different approach, Rouhiainen & Stachiewicz (1970) investigated the effect of 
shear-flow-induced lift forces on particles in a boundary layer. They found that this effect can be 
of considerable importance, although the bulk of the literature on particle deposition has not 
included this effect in the theoretical analysis. Unfortunately, Rouhiainen & Stachiewicz (1970) did 
not calculate deposition rates from their theory. 

Another effect which influences particle deposition is the turbulent migration. This effect is 
created by gradients of turbulent energy and imposes a drift velocity on particles in the direction 
of the solid boundaries. This effect was discussed (probably for the first time) in 1967 by Fortier 
(1967). He predicted particle deposition from the atmospheric boundary layer and obtained 
acceptable agreement with the available data. Turbulent migration was the only mechanism he 
considered. Much later, Reeks (1983) deduced the migration effect from a special closure of the 
averaged particle Liouville equation. He named the effect "turbophoresis" and showed that 
turbulent migration could have a strong impact on particle deposition. In a recent paper, Mednikov 
(1985) stresses the importance of the combination of transversal lift forces and turbulent migration. 
These effects seem to be of great importance in a theoretical description of sediment transport, but, 
to date, have not been included in models of particle deposition. 

In this paper we will study the effects created by transversal lift and the gradients of turbulent 
r.m.s, velocities. The results will be employed to predict deposition rates on a fully absorbing 
vertical wall. 

THEORY 

The particulate phase can either be described in a Lagrangian or a Eulerian frame of reference. 
A preliminary investigation in Lagrangian coordinates showed severe problems with a numerically 
created false drift of particles in the direction of the lower turbulence intensities. The Lagrangian 
approach was therefore abandoned, though there are no principal limitations which make the 
Lagrangian description impossible. However, in the near-wall region, where the smallest particles 
are only influenced by Brownian motion, the Eulerian description is preferable due to significant 
savings in computer time. 

The particulate phase as well as the fluid phase is then described in the Eulerian frame of 
reference. It is assumed that we have a dilute particle phase where there is no coupling between 
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the ~ c l e s  and the fluid. Hence, both the fluid mean velocity and turbulence characteristics are 
assumed tmdistutbed by the particle phase. A criterion f0rhaving a dilute ~ o n  with respect 
to ~ l e  to.gas momentum and energy c, oupling is that the particle phase bulk density is negligible 
compltred with the gas :phase, i;e. ~pp ,~(! - ~)PF; ~ isthe volume frac*don of particles and PF is 
the gas (fluid) density. The criterion says that diluteness is obtained when the bulk density of the 
particles is much smaller than the gas bulk density. As ~ ,~ 1, the criterion may be simplified to 

PF E , ~ n ,  
PP 

which is fulfilled for most experiments on particle deposition reported in the literature. 
In the following we will consider heavy particles (PP/PF >:> 1) which obey Stokes law (Rep ,~ 1.0). 

The transport equations can now be defined by space-averaged fields (Nigmatuiin 1979). The 
Brownian motions have, in general, been disregarded and the averaging control volumes are 
restricted, so as to be much larger than the particle size, As discussed by Besnard & Harlow (1988), 
the averaging procedure makes it impossible to deal with length scales which are small compared 
with the size of the control volume. Hence, only effects which are due to large-scale turbulence 
(compared with the particle size) can be represented. In a stationary, two-dimensional situation the 
continuity equation reads: 

0 ( D ~  x0~) - - _  - - _  0 / 0 t '  a o. ( t u , )  + - + = [1] 

Here Up and Vp are the space-averaged particle velocities in the x and y directions, respectively, E 
is the particle volume fraction for particles in a size class with volume-averaged diameter dp and 
D is the Brownian diffusivity of the particles. In [1] themassflux due to Brownian motions has been 
reintroduced into the equation via an ad hoc hypothesis. This ad hoe hypothesis assumes that the 
Brownian massflux is independent of the "non-Brownian" particle velocities up and Vp. Let up and 
x be parallel to the flow direction and the wall, and the x direction is vertical. The conservation 
of axial momentum now gives 

~_ ~p (UF __ Up) , [CD " Rep~ (tu ) (tVpUp) + [2] 

uF is the space-averaged fluid velocity parallel to the wall, tp = (ppd~)18/~ is the Stokes relaxation 
time and gx is the component of gravitational acceleration in the flow direction. Rep = l ut - up ldp/V 
is the particle Reynolds number, CD is the Rep-dependent drag function provided by Morsi & 
Alexander (1972) and v is the kinematic viscosity of the fluid. It should be noted that several terms 
(Maxey & Riley 1983) have been omitted in [2], such as the pressure term, virtual mass term and 
the Basset term. However, the restriction pp ,> pF makes our simplification valid (Hjelmfeldt & 
Mocros 1966). The particle momentum transport normal to the walls is given by 

O O (evg) = e . [CD" Rep'~ 0.171E dp (UF-- Up) + [3] 
~"~X ('UP VP) "31- ~--yy ~p(VF--VP)~' ~ " ")+ t---~ tp 

Here VE is the space-averaged fluid velocity normal to the wall. The last two terms in this equation 
are the Saffman lift force (Saffman 1965) and the electrostatic force due to mirror charging. The 
particle acceleration due to mirror charging is given by Boothroyd (1971) as 

VIE__ q: 
tp tp 12r~2e0/~ dpy 2' [4] 

where 1/E is an electrostatic drift velocity, q is the particle's electrical charge, 80 is the electric 
permittivity of vacuum, # is the fluid viscosity and y is the distance between the waU and the origin 
of the ~ l e .  If  th~ particle and the ,wall are made of poorly conducting materials, the electrical 
permittivity for the.wall and p ~ c l ¢  material must be introduced into [4] (Hesketh 1977). It should 
be noted that electrostatic effects due to mirror charging can arise if either the walls or the particles 
are charged. 

Equations [1]-[3] are now simplified by assuming negligible axial gradients of the fields com- 
pared with the direction normal to the walls (a/ax ~ 0). The fields Up, Vp, E, UF and VF are now 
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decomposed into ensemble-averaged (Op, Vp, g, OF and FF) and fluctuating components (primed), 
and the resulting equations are finally ensemble-averaged. At this point it is important to stress 
that we have chosen to work with fields which are first space-averaged and then emsemble- 
averaged. This approach was judged by Besnard & Harlow (1988) to be especially attractive for 
the kind of flows in question (dilute flows). 

Alternatively, the equations could have been averaged using density weighting or Favre- 
averaging. This approach seems attractive but necessitates an accurate closure for the density- 
weighted Reynolds stresses in the inner wall boundary layer. However, to the best of our 
knowledge, such a closure has not been presented so far. 

The ensemble-averaging of the simplified continuity equation now gives 

a 0 ( 0q 0 ( g ~ ) +  <e'v~,) =o. [5] 

The Op-momentum equation gives (triple correlations of primed quantities are neglected and 
CD" Rep/24 ~ const for near Stokes law particles): 

ay 

g - CD'Rep <e 'u~)-<e 'u~, )  /CD'Rep'X _ 
= ~p ( U  F - -  Op)  24 "Jr" tp - -  t 2 4  . ) + e g ~ .  [6] 

By noticing that the wall massflux is Jpp, we obtain from [5], for the flux J: 

0( 
J = gVp + (e'v~,) - O - - .  [7] 

02 

After [7] is introduced into [6], we obtain 

ova_ o (Do( ) 
Oy ay k Oy O P + E < u ; v l ) + g < e ' u ~ )  

- ( C o ' R e p ~  ( e ' u } ) -  (e'u~,) /'C~,' Rep'X ( 

A similar treatment of [3] for particle momentum normal to the walls yields: 

0Fp0__7 = -0y0 ( 0 ( )  0 (J + (e'v~,)) D~yy Ve+e(v~)  - Ve~yy (e'v~,) 

( ( p F _ e p ) . / C o .  Rep'~ ((e'v~:)--(e'v~,)) /'Ct>-_Rep'~ 
+t-p \ 24 ] +  tp ' \  24 ] 

0.171 dp g(Uv - Up) 0 + ( s )  [9] 
+ t v tp 

The quantity ( s )  is here defined by 

( , ,10, 
(S> ~ E(U v -- Up) X/ @1 V 

The particle transport is now described by [5] and [7]-[9]. However, the equations contain 
unknown correlations which must be determined in order to close the set of equations. 

As we have assumed negligible axial gradients of all fields, the correlation between volume 
fraction fluctuations (e') and axial velocity fluctuations (u~:, u~,) must disappear. The correlations 
(e'v[,) and (e 'v~) are modelled via gradient diffusion (Pourahmadi 1982): 

P & [11] <c'~)  = - v ,  ay" 
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HoWever, the difference flux (~'v ~ ) - (~'v ~) is assumed to take the isotropic flow value obtained 
from [9]: 

co ,, (123 

The long-time particle dispersion coefficient vt v has: in several works (Gouesbet et al. 1984; 
Desjonquers et al. 1986) been predicted to be identical to the fluid diffusivity yr. However, external 
fields such as gravity will cause crossing particle and fluid trajectories. Hence, the particle's 
~ n c e  time within a turbulent eddy becomes: shorter: than the fifetime of the eddy. The result 
is that the particle dispersion coefficient (v r) will become smaller and smaller, compared with the 
fluid; eddy diffusivity vt, as theparticle settling velocity increases. Picart et al. (1986) found that 
a good estimate for v is 

vt l, -- vt [13a] 
~1 0.851 f'p~ -- JYF.il 2' 

3 

where 1 7p.i - FF.~I is the magnitude of the interphasial relative velocity and k, is the kinetic energy 
of the turbulent velocity fluctuations, 

ko=l  
If the 17article s are v~'y small they may show Schmidt numbers < 1.0. In this case the turbulent 

dispersion of particieswill be  oyerpredicted by [13a] due to an additional coupling between 
Brownian motions and turbulent dispersion, This can be reflected via a turbulent, Brownian motion 
induced, Schmidt number Sct*. 

Reynolds (1975) predicted vt P to be 

l~t (VF2~  "'~L , [13b] 
V~=Sct , -  I + ~ L  

"C m 

where ZL is the Lagrangian timescale of the fluid and ~ is the relaxation time for diffusion. The 
ratio ~L/Zm was estimated by Reynolds to be 

-- = ci" [14] 
~m 

The turbulent diffusivity of the fluid is v, = (v~) • ZL (Rogers et al. 1986) and, by taking the constant 
c~ = 1.0, the Brownian contribution to the turbulent Schmidt number becomes 

sc * = 1 . [ 1 5 ]  

The final dispersion coefficient for the particles is obtained by combining [13a], [13b] and [15] to 
obtain 

[16a] 
= Sc ' 

where the effective turbulent Schmidt number Sct is given by 

The Brownian contribution to the turbulent Sehmidt number causes a reduction in vt v in regions 
where D > vt, and'is~ at ~t, in qualitative agreement with experience With heat flow in low Prandtl 
number fluids (Launder 1978). In regions with large relative velocities and low values of the 
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turbulent kinetic energy k., typical of the inner wall layer, the reduction in v P due to the "crossing 
trajectory" effect may be significant. 

The ensemble-averaged squared particle fluctuating velocity (v~, 2) normal to the wall is due to 
Pourahmadi (1982): 

(v~, 2) ( v , ) ( 1  + t~) -1 
= . [ 1 7 1  

However, this relation assumes an equilibrium situation where the particles have infinite time to 
adjust to the fluctuations of the fluid. In particle deposition, where there might be a significant 
movement of particles through the wall boundary layer, the assumption of equilibrium is somewhat 
doubtful. Particles which travel through regions with sharp gradients in turbulent r.m.s, velocity 
will not "feel" the changing background fluid field if the particle relaxation length lr is larger than 
the thickness of the region. A crude criterion for equilibrium is 

lr = x/(v~,2) " tp ,~ 6, [18] 

where ~ is a typical particle r.m.s, velocity and 6 is the thickness of the buffer layer. If wall 
variables are introduced, [18] can be made dimensionless: 

x / ~ 2 )  +" t + '~ 6 + [19] 

,2 2 u~ / v ,  6 + • Here (v~, 2) = ( v p  ) / u r ,  t + = tp . = 6 u , / v  and the wall shear velocity is u, = ~ ,  where 
~w is the wall shear stress. In the literature (Reeks & Skyrme 1976) a typical Lagrangian timescale 
~+ = re" u~/v in the buffer layer is reported to be r+ ,~ 11.0. The maximum value of (v~:2)/u2, is 
close to 0.64 (Kim et  al. 1987) at the edge of the buffer layer. The thickness of the buffer layer 
is typically 6 + ,~ 30. Introduced into [17] and [19] these values give reasonable equilibrium particle 
r.m.s, velocities for 

t~- <~ 138. [20] 

A stringent prediction of the particle r.m.s, velocity for a typical nonequilibrium situation involves 
the solution of transport equations for the particle r.m.s, velocities. This approach offers several 
theoretical complications which are avoided in the present work. As we will see below, the accurate 
representation of particle r.m.s, velocities plays only a limited role in the deposition of larger 
particles (t~ > 10). We have therefore employed the equilibrium condition given by [17], as a first 
approach. 

According to Pourahmadi (1982) the correlation (u~ , v~ )  is modelled as 

OOp [211 (u~,v~,) = - - v p  Oy " 

The last term we have to consider is ( s )  from [10]. This is a highly nonlinear term which is 
difficult to estimate. However, we know that the turbulent transport is directed in the y direction 
since ~3/Ox = 0. The transport in the y direction is driven by the turbulent fluctuations v ~. Since 
v~ or v~, do not enter [10] it is plausible to assume that 

( s )  = 0. [22] 

Dimens ion less  Formula t ion  o f  the Governing Equat ions  

We can now introduce our modelling correlations into [7]-[9]. At the same time we introduce 
dimensionless variables into all the equations. From [7] we obtain 

= _Iv: l)0,  
J+ J =¢+V~- \Sc t+  ' [23] UTES SC 0y + 

Here EB is the bulk particle volume fraction far from the wall, v + = v, /v ,  y + = y • u , /v ,  Sc, is given 
by [16b] and the inverse Schmidt number is, for Brownian motion, represented by the Einstein 
diffusivity: 
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D k T ,  
S c -  I . . . .  [24]  

v 3n/U/p v'  

where k is Bolt~mann's comtant, T is the absolute temperature and/z is the fluid viscosity. 
For particles with Knudsen number < I (Kn = dp/22v, Av is the gas molecule mean-free-path), 

the Brownian diffmivity is inaccurately represented by D ~kT /3n#dp  and must he corrected 
(Talbot et al. 1980). If we introduce the dimensionless particle diameter d~" = dpu,/v into [24], we 
obtain 

SC_ l = k Tu, Ei 
37tlzv2d~ = d~ " [25] 

We have now introduced a dimemionless Einstein number Ei in orderto make all quantifies and 
fields dimensionless. The Einstein number is #oven by 

Ei = kTu, 
3-#v2. [261 

The modelled and dimensionless form of [8] is now 

W =  - 
Oy+ o , [27] 

where the dimensionless particle relaxation time is #oven by 

t~ = t ~ ' - - .  [28] 
Y 

Similarly, we obtain from [9] and our modelling assumptions (f'~ = 0): 

0 + 

Oy+] t~" \ 24 ] 

0"171d+E (UF --U~ ) J 0 - ~ I O ~ I - ~  _+ -+ + 0 ~+V + 
-t t---~ t + 

The dimensionless "drift velocity" V~-, taken from [4] is now written as 

Mi 
d+y +2, 

where the dimensionless group Mi representing mirror charging is 

M i =  q2u~ 
127t 280/zV 3 " 

[29] 

[30] 

[31] 

To complete the model we need a good representation of the turbulent kinematic viscosity v + , 
the Lagrangian timescale ~ ,  the fluid r.m.s, velocity (v~ 2) and the mean fluid velocity /7 r 
throughout the boundary layer. However, v / is #oven as 

v+ = (v[~2>+t~ " [321 

and the velocity profile in a one-dimensional boundary layer with negligible pressure gradient is 
(Tennekes & Lum!ey 1972): 

• O ~ ( y . + ) =  dY + 
I + v, +" [33] 

Hence, we only need a good and, if possible, .general representation of v + and (v~2) +. 
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We have chosen v3 to be: 

y+ ~3 
11--i~J ' Y+ < 3.0, 

\l--i~.4J -0"049774'  y+e[3.0 ,  52.108], 

0.4y +, y+ > 52.108. [34] 

The value of  v~ + for y+--*0 is in accord with the direct simulation of  turbulence in a channel by 
Kim et al. (1987). The velocity profile obtained from [33] and [34] is in very good agreement with 
Kim et al.'s simulated velocity profile (Johansen & Ytrehus 1988). 

A representation of  the fluid normal r.m.s, velocity is chosen in accord with the results from Kim 
et al. (1987) and the measurements of  Kutateladze et al. (1979): 

y+ 

/ / y + 300, 
v'(y +)+ = ~ =  exp l_ ~ J '  

v'(30.0) + - [v'(30.0) + - 0.65] (y + -- 30.O) y + ~ <30.0, R +], [35] (R + - ' 

where R + is the dimensionless channel half-width or the dimensionless tube radius. The Lagrangian 
timescale is now obtained from [32], [34] and [35] by 

vt+ [36] 

The velocity profile 0~-(y+) which results from [33] and [34] is 

I (Y+) 11.4 tan-  i 

O~-(y?) + 2.5 In (11 + 0"4y+~ 
+ O.4y ]' 

where y i ~ = 52.984. 

y+ <~ y~-, 

y+>y~-, 

[37] 

The representation of  the fluid fields concludes our model, which is given by the [23], [27] and 
[29]. The dimensionless form of the model simplifies the study of  the quantities which play a role 
in the deposition process. The actual dimensionless quantities are the Einstein number Ei, the 
mirror charging group Mi, the channel or tube half-width R +, the gravity group (gxv/u~) in [27], 
the dimensionless particle diameter d~- and the dimensionless particle relaxation time tb ~ . However, 
d + is linked to t + by 

ppd~ u~ _ ( pp~ d~ : [38] 
t~-= 18---~ v \~F// 18" 

Hence, the density ratio PP/PF, t~, Ei, Mi, R + and (gxV/U~) are the dimensionless quantities 
which will describe the deposition flux in the present theory. 

Some of the physics contained in [23], [27] and [29] can be investigated by some simple 
considerations. Let us assume that the particles do not adhere to the wall material and no electrical 
charges are present, so there is a zero deposition flux (J+ = 0). All the terms with second order 
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in O/Oy + are neglected in [27]. and [29]. Hence, for Stokes law particles (Ca=  24/Rep) the axial 
particle velocity becomes 

U~" = ~'~" + t~ ~ j  [39] 

and the normal to wall particle velocity component is, with help from [39]: 

~" = -- iv ~-~-7 (o~,:) + --0.171 d~t~ ItT~ I. [4O] 

The first r.h.s, term in [40] represents the turbulent migration. The turbulent migration term is 
t~(O/Oy +)(v~2) +, which is similar to the expression quoted by Mednikov (1985). Since the gradient 
in (v~2~ + is steep in the buffer layer (y+ < 30, see [35]), the migration term causes a drift of the 
particles towards the wall. 

The last term expresses the drift caused by  the transversal lift in a shear flow. When the 
x-component of gravity is directed in the flow direction~ the lift force will enhance the transport 
towards the wall. If the flow direction is reversed the lift force will cause a migration away from 
the wall. 

If we now consider a situation where the gravity vector points in the flow direction we should 
expect particles to migrate towards the wall. From [23] we obtain: 

0E + 
~+F~ = (v~ + Sc-') 03,--- 7 . [41] 

The particle migration will in this situation, if the particles are not absorbed by the wall, cause 
a buildup of particles close to the wall. Equilibrium is obtained when the diffusive transport away 
from the wall balances the migration flux in the opposite direction. The equilibrium concentration 
is obtained from [41]: 

e+=e+(R+)ex _ + vt*+Sc-1] ' 

where e +(R +) is the bulk void fraction of particles. A constant and negative V~ will then cause 
a buildup in the boundary layer; In the Brownian diffusion boundary layer, the concentration will 
increase exponentially with reduced y + if V~ ~ const. 

APPLICATION OF THE MODEL TO TUBE FLOW 

The equations which describe the particle volume fraction and velocities ([23], [27] and [29])are 
strongly coupled and cannot be solved by analytical means. We have therefore adopted a numerical 
procedure, which will be  described in this section. 

Most data on particle deposition is available for tube flows. Hence, it is natural to verify our 
model against experimental results for tubes. As the major variations in the particle concentration 
andthe radial particle drift velocity are confined to a small region close to the walls, the governing 
equations are kept in cartesian notation. The governing equations are mainly first-order ordinary 
differential equations. Equation [27], which describe Up-momentum, is, however, second order. We 
therefore need one boundary condition for ~ and Vp each, while we need two for Up. The boundary 
conditions were taken as: 

V+(y  + = R +) = O, 

and 
i 

0k 
ay+ --0 f o r y  + = R + .  [42] 
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These boundary conditions imply that the particle concentration drops to zero at one particle 
radius from the wall. At the centre of  the tube, symmetry conditions are employed and the particles 
move relative to the fluid at the settling velocity. 

A discrete grid for the y direction is now devised. The first gridpoint is taken at y ÷ = d~-/2, and 
after a very small grid spacing (Ay ÷ = 10 -3) the grid spaces are expanded by a factor of  1.10. The 
grid is then given as: 

=d! 
2 

j~<2: + 
L y  + -~-- + 0.001 

j > 2: y ?  = (YL~ - YL2)" 1.10 + yj+- l. [431 

The fields ~, Up and Vp are now stored in each gridpoint. The fine grid resolution near the wall 
is due to the thin concentration boundary layer for Brownian diffusion. The concentration 
boundary layer thickness 6 + can be estimated to be (Davies 1972): 

6 + ~ 10Sc -1/3. 

The grid employed herein is therefore good for Sc < 10 9 as we will then have several gridpoints 
within the diffusion boundary layer. For Sc > 10 9, the particle diameter is large enough for 
turbulent dispersion to dominate over diffusion. Turbulent dispersion dominates over Brownian 
diffusion at the wall if 

From the insertion of  [25] and [34] into [44] we obtain that Brownian diffusion can be neglected 
when 

Sc > 23.2. Ei -2/3. [45] 

A typical value of  Ei in air at room temperature is Ei = 10 -7, with the result that Brownian diffusion 
is only important for Sc < 106. Accordingly, the grid employed will always have several gridpoints 
in the Brownian diffusion boundary layer when this mechanism is of importance. 

The ~ and V~- equations are solved by the Euler backwards differencing scheme. The V~- 
equation is solved by starting at y + = R + and then marching from gridpoint to gridpoint towards 
y + = d+/2. The E--*- equation is solved in the opposite direction, starting from y ÷ = d+/2 and then 
marching towards y + = R ÷ 

The U~ equation is solved by a standard implicit technique for elliptic partial differential 
equations. The actual technique employed here is the "tri-diagonal-matrix-algorithm" which is 
outlined in detail by Patankar (1980). 

Initially the fields are given by [39] and [40] for U~" and V~-. E + = 1.0 is the initial void fraction 
at all the gridpoints. The average bulk void fraction is now defined as 

2 fR+ [461 EB=-~-gS jr+=of(Y+)r+ dr +, r+ =R+--y+;  

and the dimensionless average void fraction is then 

2 f f+ f+(y+)r ÷ dr + - 1. [47] 

Assume that we have previously calculated cB,p. + Then the mass transfer coefficient k ÷ is given 

by 

k+ k J J - J+ [48] 
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At this step it is important to note that for an unconverged set of equations the previous or 
intermediate value of E~, namely E~.p, may deviate considerably from 1.0 depending on the initial 
guess of J+. 

The equations are now solved interatively: 

1. Initialize U~', f'~ and ~+ as described above. Set initial guess of J+. 
2. Solve for U +, f'~" and ~+. 
3. Calculate k + = J + / ~ , ,  where E~-~ is defined by [46] with ~ replaced by E +. 
4. Check if the previous value of the average bulk void fraction EB.p + deviates from 

1.0 by more than _+0.01. If the deviation is greater we take J+ = k + and return 
to Step 2. 

5. Solution has converged. The final mass transfer coefficient is 

k + = j +  

and [47] is fulfilled. 

It was not necessary to underrelax the solutions for the fields from iteration to iteration. 
Convergence is established after 2-10 iterations, depending on how far the initial guess for J+ is 
from its final value. 

RESULTS 

The theoretical results can now be tested against experimental results. The deposition data of 
Liu & Agarwal (1974) span over a fairly large range of t + and two different Reynolds numbers. 
They used urea particles deposited on a glass tube. In their experiments the shear velocities were 
given as u, ffi 0.745 and 3.12 m/s. The carrier gas was air at room temperature, and the density ratio 
between aerosol particles and the gas was given as PP/PF ffi 833. They found that particles generated 
in this type of aerosol generator only carried a few electrical charges. The aerosol cloud was 
electrically neutral with a bipolar charge distribution. The standard deviation of charge for 1.75 gm 
particles from the aerosol generator was found to be 4.6e. 

The experimental conditions are summarized in table 1. 
The particle charge was assumed to be 

q =4 .6e  \1 .75~m]  

during the preliminary calculations. Figures 1-4 show how Vp, Up-  UF and C vary through the 
inner velocity boundary layer for different values of t~- when the physical conditions correspond 
to run 1 in table 1. Larger values of t~ increased the pumping of particles towards the wall. The 
transversal lift and turbulent migration are the mechanisms responsible for this effect. Figure 4 
shows the situation for t + = 50. Now both Fp and Up - UF increase as the wall is approached. The 
large values of gp close to the wall remove the particle build-up close to the walls. The simulations 
showed that at t~ ~ 9.95 the situation in the boundary layer could be compared with figure 2, while 
t + ~ 9.96 caused an abrupt change in the Up and [Tp fields and the field distributions were 
comparable with figures 3 and 4. 

The major difference in the fields below t~- ~ 9.95 and above t + ~ 9.96 is found in the normal 
velocity f'p and the relative velocity Up - UF. Up to t~ ~ 9.95 the ensemble-averaged normal to 
wall velocity f'p is zero and the relative velocity U p -  UF is small. As a consequence, the particle 
build-up in the boundary layer increases with increasing t + until t~- > 9.95. From t~ ~ 9.96 f'p 
takes a finite value at the wall and Up - UF now takes much larger values than for t~ < 9.95. For 

Table 1. Basic data for the experiments of Liu & Agarwat'(1974) 

Run No. u,(m/s) R + PP/PF gV U-~ Ei Mi t~ 

1 0.745 310 833 3.71 • 10 -4 7.42" 10 -e ? 1-50 
2 3.12 1300 833 5.06" 10-~ 3.11 ' 1 0  - 7  ? 5-200 

LIMF 17/3.--F 
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Figure 1. Predicted profiles of g/gmx , (Up- Uv) I Up- 17Fl=, 
and - 17p/117p,~l for t~ = 0.1. The physical conditions are 
given by run I in table 1 and the electrostatic charging factor 

is £ = 0.003. 
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Figure 2. Predicted profiles of EI~,,~, ( U p - U r )  / 
I/Tp-U~l~ and -17p/IPp.m~xl for /~=t.0. The other 

physical conditions are the same as for figure I. 

increasing + + tp (¢p t> 9.96) the near-waU particle concentration assumes lower values while Vp and 
U p -  OF increases. 

The situation described above is further displayed in figure 5. The predicted profiles of ~ are 
compared for five different t~. For t f  < 9.95, ~ builds up in the wall region; while t f  > 9.96 shows 
a situation with ~ in the near-wall region. For t f  = <0, E peaks at the lower wall, but the peak 
is small compared with the situation for t~- < 9.95. 

When simulations were carried out for run 2 in table 1, it was found that the change 
in the near-wall profiles discussed above, took place for t f  between 7.48 and 7.49. The 
major cause for this behaviour is that the value of gv/u~ is now only 14% of its value in run 1. 
Hence, the analyses show that there exists a critical value of t~-, above which resistance against 
deposition through the boundary layer is low. This critical t~- seems to increase with increasing 
gv/u3,. 
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Figure 3. Predicted profiles of 7~mx, (Op--Ur) / 
I/Tp- O~1.~, and --~p/IFP,m.~I for t~ = 10.0. The other 

physical conditions are the same as for figure 1. 
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Figure 4. Predicted profiles of f/(m~, (Op-{7~)/ 
I U p - U r [ ~  and -lTp/[Fp,r~xl for t~ = 50.0. The other 

physical conditions are the same as for figure 1. 
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Figure 5. Comparison of predicted profiles of ~/~,~, for 
different values of tg. Here t~ takes the values of 0.1, 1.0, 
5.0, 10.0 and 50.0. The other physical conditions are the 

same as for figure 1. 
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Figure 6. Predicted dimensionless mass transfer coefficient 
k ÷ vst v + for the physical conditions given by run I in table 
1. The deetrostatic charging factor is ¢ = 0.003, The dotted 
line is obtained when the transverse lift term is omitted from 
[29]. The dashed line results when only the turbulent mi- 
gration term is omitted and the solid line is the result when 

all terms are retained. 

Predicted mass transfer coefficients for run 2 are given in figure 6. The figure demonstrates the 
influence of the turbulent migration and the transversal lift on the deposition rate. For tg- < 0.1, 
the deposition is completely determined by Brownian diffusion and turbulent dispersion. In the 
region 1.0 < tg- < 9.95, the predicted deposition r~te mainly results from the turbulent migration 
term; while for t + > 9.96, the transversal lift. is the dominating effect. For t + > 200, the lift and 
the migration terms contribute equally to the deposition flux. 

The maximum deposition rate close to tg- = 15 is a result of a combination of  the lift and turbulent 
migration mechanisms, which interact strongly;in this regime (12< tg <50). For tg->50,  
the deposition rate drops for increasing t~.  The physical explanation is found in the turbulent 
migration term, which, according to [35], creates a drift away from the wall for y + > 30. For large 
tg-, there is no resistance against deposition in the inner boundary layer, and the deposition is 
governed by the turbulent migration and dispersion in the bulk flow. From [17], [35] and [40] it 
is expected that increasing t~ will result in a reduced deposition rate Until tg- >> z~ throughout the 
bulk fluid. 

The electrostatic forces due to mirror charging are now investigated. The maximum charging of 
a particle is, according to Hesketh (1977): 

f Py 
qmax = 500 e k10_--67~m} ; d, > 10 -7 m. [49] 

The particle charge is therefore assumed to be a given fraction 8 of the maximum charge qm~x, 
which gives 

q =8"qm~x; 8<<. 1.0. [50] 

Calculated deposition rates for # = 0,0, 0.1 and 1.0 are shown in figure 7. The deposition rate is 
strongly enhanced by electrical charges for intermediate t + . This surprisingly strong effect is caused 
by the turbulent migration whichpumps particles into the wall boundary layer. The electrostatic 
forces are of  short range, but extremely close to the wall t hey  dominate over Brownian diffusion 
and turbulent disper~on. Hence, the near-wall resistance against deposition is lowered by increased 
particle charge and the deposition rate will increase. 

The theoretical deposition rates can now be compared with the experiments of  Liu & Agarwal 
(1974). We first consider the situation given in table 1, run 1. The electrical particle charge 
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Figure 7. Influence of electrostatic charge on the deposition 
rate k + vs t~.  The fraction of particle electrostatic charge 
to the maximum charge is 8, which takes the values 8 = 0.0, 
0.1 and 1.0. The physical conditions are given by run 1 in 

table 1. 
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Figure 8. Comparison of predicted deposition mass transfer 
coefficients k + with the experimental data of Liu & Agarwal 
(1974) ( 0 )  and the mass transfer data of Campbell & 
Hanratty (1983) ( . - - ,  lowest straight line). The experimen- 
tal situation is given in run 1 in table 1. The dashed line 
represents the charging factor g = 0.003 reported from one 
experiment (Liu & Agarwal 1974), while the solid line 

represents ¢ = 0.03. 

reported by Liu & Agarwal corresponds to ~ = 0.003 in [50]. However, they measured the 
charge distribution at the exit of their aerosol generator and it is reasonable to expect that 
the decharged particles might pick up a few more charges on their way from the aerosol generator 
to the test section. We have therefore taken d~ = 0.03 as a possible value for the particles in the 
test section. 

The result is seen in figure 8. The value of ~ = 0.003, given by the experiments of Liu & Agarwal 
(1974), lead to an underprediction of the deposition rate for t~" ~< 2. However, the suggested value 
of g = 0.03 gives excellent agreement between the theoretical predictions and the experiments. For 
t~- ~< 0.1 the deposition is mainly governed by Brownian diffusion. In this region our results are 
compared with the experimental data of Campbell & Hanratty (1983). They found that the mass 
transfer rate k ÷ for large Sc is 

k ÷ = 0.09. Sc -°7. [51] 

With the help of [25] and [38] the mass transfer rate is rewritten as 

k +=0 .09 (E i  pp ~07 . [ 5 2 ]  

From figure 8 it can be seen that the experimental results, given by [52], are very well reproduced 
by the present theory. 

Similarly, the theoretical predictions for run 2 in table 1, are compared with experiments in 
figure 9. The experimental data show slightly larger deposition rates than the predictions for the 
lowest data point. However, in general, the agreement between predictions and experiments is 
excellent. Also, in the Brownian deposition regime the predictions fit the experimental data 
represented by [52] satisfactorily. 

It is interesting to note that the tube Reynolds number has an influence on the deposition rate. 
Both the experiments and the predictions give a maximum deposition rate which is largest for the 
smallest Reynolds number (run 1). The Reynolds number effect is clearly shown in figure 10, where 
the predicted deposition rates for t~ -- 20 decay with increasing tube Reynolds number R ÷ = R u , / v .  
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Figure 9. Comparison of  predicted deposition mass transfer 
co¢fllcients k + with tbe experimental data  of Liu & Agarwal 
(1974) (71) and the mass transfer data of  Campbell  & 
Hanrat ty  (1983) ( , lowest straight line). The exper- 
imental situation is given by run 2 in table 1. The dashed 
line represents the charging factor ¢ = 0.003 reported from 
one experiment (Liu & Agarwal 1974), while the solid line 

represents 8 = 0.03. 
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Figure 10. Predicted deposition mass transfer co¢ff~ents k + 
vs the tube Reynolds number  R+fR 'u , / v .  The data 
corresponds to run 1 in table 1, and only the tube radius R 

is varied in order to achieve different values of  R +. 

In these simulations the gravity group (gvlu 3) has been kept constant, and except for R + the input 
data was as for run 1, table 1. 

It is now interesting to see the effects of the flow direction. So far we have considered a downward 
flow where the lift force always cause a migration towards the wall. The flow direction is easily 
reversed by changing the sign of the gravitational acceleration. It was quite surprising to find that 
the predicted deposition rates for an upward flow are surprisingly similar to the predictions shown 
in figures 8 and 9. It was expected that the particle velocity would b¢ less than the fluid velocity, 
due to settling in an upward flow. However, the turbulent migration mechanism ci'eates a drift of 
particles through the boundary layer from regions with large tTv to regions with smaller fluid 
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Figure 11, Comparison of normalized axial relative vel- 
ocities (~Tp - OF)/] ~Tp -- [Tr l~ , for downward and upward 
vertical flows. The physical conditions are given by run I in 

table 1; t~" ffi 5.0 and 8 = 0.003. 
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Figure 12. Predicted influence of  transport  direction (up- 
wards or downwards) on the deposition rate k + for run 1 

in table 1 and 8 = 0.003. 
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velocities. The particles can therefore obtain larger U velocities than the fluid if they move fast 
enough in the direction of smaller OF. When the particle inertia increases, the particles will retain 
more and more of their axial bulk velocity on their way through the boundary layer. Also, turbulent 
dispersion plays an active role in equalizing the axial particle velocity. Turbulent dispersion will 
therefore speed up the axial particle velocity in the inner boundary layer and reduce the axial 
velocity in the bulk flow. The result of both mechanisms in combination is that the particle velocity 
can be lower than the fluid velocity in the core of the flow and larger than the fluid velocity in 
the wall boundary layer, regardless of flow direction. Such behaviour is demonstrated in figure 11. 
This result is restricted to a situation where particles deposit on the wall, and there are actual 
situations where settling will dominate over drift and dispersion in the bulk flow. 

In figure 12 the theoretical deposition rates are compared for upward and downward flow. For 
0.1 < t~" < 10, it is seen that the deposition rate may be increased by a factor of 2 if the flow 
direction is turned from upwards to downwards. The charging coefficient was set to its lowest value 
(¢ = 0.003) in this calculation. For small (t~- < 0.1) and large (t~- > 10) values of t~- the deposition 
rate is governed by Brownian diffusion or turbulent dispersion and migration in the bulk fluid. As 
expected, the deposition rate is independent of the flow direction in these two regimes. 

An investigation of the effects related to the gravity group gv/u~ is shown in figure 13. The 
calculated situation is represented by run 1, table 1. The particle charge is given by [50] and 
8 = 0.003. The flow direction is downwards. From figure 13 it is seen that the group variations 
of the shear velocity u~ and, accordingly, the gravity group (gv/u~) result in a large range of 
deposition rates for a fixed value of t~-. This is a result of the enhanced lift forces created by larger 
settling velocities. 

DISCUSSION 

The model presented seems to represent experimental data for deposition very well, though there 
is room for further development of the model. The flow has been assumed to be one-dimensional 
and it is not possible to obtain a correct particle concentration distribution close to the centre axis 
as &/~x # O. 

The boundary condition for particle momentum in the x-direction is somewhat problematic. The 
assumption that J+O~- ~+vg (dO +/dy +)= 0 at both boundaries implies that we have a mirror 
condition. A mirror wall boundary condition is achieved in practice when the particle collisions 
with the wall are completely elastic and no U-momentum is lost in the collisions. When the wall 
absorbs the particles, the situation becomes more complicated. However, there will be no transport 
of U-momentum from the wall to the laminar sublayer and the positive flux from the wall to the 
first near-wall node must be zero. In general, it is preferred to have wall functions which can link 
the near-wall concentration to the wall shear stress imposed by the particles. At the symmetry line 
the mirror boundary condition is not a problem. 

The analyses presented herein shows that the particle deposition process can be accurately 
analysed by Reynolds-averaged Eulerian transport equations based on standard gas-particle 
interaction theories available from the literature. The results indicate that electrical charges may 
play an important role in the deposition process for t~- between 0.1 and 10.0. However, it is still 
a possibility that there are other physical mechanisms, not considered herein, which can explain 
the experimental data with the reported charge distribution. For example, can thermophoresis play 
an important role if temperature gradients are present? Work being carried out presently by the 
author seems to indicate that if the wall temperature was just a few degrees (2-4 K) below the bulk 
of the gas this would be sufficient to explain the experimental deposition rates even without the 
mirror charging effect. 

A full validation of these mechanisms is not possible since exact temperatures as well as the 
particle charge distribution at the entrance of the test section were not measured in the experiments 
of Liu & Agarwal (1974). However, the Liu & Agarwal data are, to the best of the author's 
knowledge, hitherto by far the best data available in the literature. 

Further, the present analysis offers some explanations of the large scatter in the experimental 
data reported in the literature (Papavergos & Hedley 1984). Davies (1983) argues that the 
deposition data can be represented by a description of dimensionless surface roughness height 
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Figure 13. Investigation of the importance of the gravity 
group (ffc/u~) by varying the shear velocity u, for otherwise 
equal conditions, as given by run I in table I and dr = 0.003; 
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Figure 14. Predicted profiles of g/gin,x. Up/Uw~,~ and 
Uv/Uv~ for zero mass transfer (IJ+lmk+m0) for the 

situation ~na!ysed in figure 15. 

distributions and the particle relaxation time t~. Indeed, the surface roughness is an important 
quantity which has been omitted in the present analysis. However, the present results for downward 
transport given in figure 13 sh0w that the gravity group (gv/u~) is an extremely important factor. 
For t + ~, 1, the deposition rate is seen to vary by almost 3 orders of magnitude if (gv/u 3) is varied 
by the same amount. According to Papavergos & Hedley (1984), the experimental data range 
between k + ,~ 10 -5 and 10 -2 for t~ -- 1.0. This compares favourably with the calculated values 
which range from k + = 10 -4 to 5 .10 -2 (see figure 13). The effect of surface roughness in the 
deposition process witl be easier to analyse in the future if the effects related to the gravity group 
(gv/u~) are accounted for. 

The physical interpretation of the gravity group for downward transport is that, for 
small u~ and larger values o f  (gv/u~), the deposition process is governed more and more by 
the lift forces. This is explained by the reduction in u ,  while t + = const, which corresponds 
to an increasing particle diameter and, accordingly, larger relative velocities. At small 
values of (gv/u~) and large u~ (u~ > 0.5), the deposition rate is only slightly dependent on 
(gv/u~). The explanation here is that for large u ,  the axial interphasial relative velocities are 
dominated by the transverse particle movement in the boundary layer and not by gravitational 
setling. 

For upward transport an increased value of (gv/u 3) will most likely lead to larger relative 
velocities in the bulk flow but reduced relative velocities in the boundary layer. Upon further 
increasing the gravity group, the near-wall particles are expected to lag behind the fluid in the 
boundary layer or even move in the countercurrent direction. If the average fluid velocity becomes 
smaller than u~t + (gv/u3~), the particles can not be transported upwards as their settling velocity 
becomes larger than the fluid velocity. Anyway, it should be obvious that the gravity group, if 
increased in upward transport, will lead to a reduced deposition rate. 

The Reynolds number, here represented by R + = Ru~/v, is alone responsible for variations in the 
dimensionless deposition rate k +. In figure 10 it was shown that the Reynolds number can at least 
alter k + by a factor of 2. The larger deposition rate in the data of Liu & Agarwal (1974) for the 
lowest R + (run 1, table 1) is explained as a pure Reynolds number effect. From the results shown 
in figure 13 it is not expected that variations in the gravity group would influence the experimental 
deposition data for t ;  > 10 as (gv/u 3) < 1.23.10 -3 in the experiments. 

The explanation for the Reynolds number effect is that for a low Re = RlTm~,/v and, accordingly, 
a small R +, the wall layer where turbulent migration and the lift mechanism dominate contains 
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a relatively larger fraction of the fluid. Hence, the concentration gradients in the bulk fluid become 
steeper and the turbulent transport in the bulk will be more effective. 

Another interesting result is that the employed eddy viscosity distribution represented by [34] 
and the turbulent Schmidt number ([15]) give a very good prediction of Brownian diffusion (see 
figures 8 and 9). The predicted Schmidt number dependence for the mass transfer rate for very small 
t~ is close to the experimental data which give k + ~ S c  -0"7. Increasing t~- gives increasing particle 
diameter for constant u, and, hence, the boundary condition E +(d~/2) = 0 will result in a larger 
deposition rate for particles than for a diffusing chemical species. 

The importance of the lift forces and the turbulent migration mechanism should make it possible 
to obtain larger deposition rates in entrance regions where the flow is undeveloped and the 
gradients in the flow fields are large. 

The model has several other very interesting implications. The model offers an explanation for 
a question which has occupied researchers for many years, namely the possibility of the particles 
having a larger diffusivity than the fluid. Goldschmit et aL (1972) showed that the particles can 
have a larger diffusivity than the fluid in turbulent jets. This result contradicts the classical theories 
(Pourahmadi 1982; Gouesbet et al. 1984; Picart et al. 1986; Desjonquers et al. 1986) for particle 
dispersion, which state that the particle diffusivity can never exceed the fluid diffusivity for any 
significant period of long time. 

The turbulent migration mechanism, caused by gradients in the turbulent r.m.s, velocities, will 
create an additional dispersion of particles. This effect will, due to [17] and [40], disappear if tp ,~ rL 
or tp ~> TL. It is therefore reasonable that turbulent migration might affect the radial dispersion of 
particles in a turbulent jet where there are gradients in the radial turbulent r.m.s, velocity. 

Another interesting result of the migration mechanism is the enrichment of particles in the wall 
boundary layer for intermediate t~-. Due to Pourahmadi (1982) and Elghobashi & Abou-Arab 
(1983), a large concentration of small particles in the wall boundary layer will lead to enhanced 
dissipation of  the fluid turbulent energy. Then the "laminar" wall layer will increase in thickness 
and the wall shear stress will decrease. This effect is known as "the drag reduction" caused by small 
particles or macromolecules. Pourahmadi's (1982) analysis shows that dissipation due to particle- 
fluid interaction is proportional to (/(lpq-TL) and it is therefore expected that small particles 
(tp ~ ~L) will contribute the most to this additional dissipation. However, the present analysis shows 
that particles with intermediate t~- build up in the boundary layer. Then a given, intermediate, 
particle size (not the smallest), can result in the maximum drag reduction. Figure 14 shows that 
a nonabsorbing wall for tff = 10 will give a very large near-wall particle concentration compared 
with an absorbing wall (figure 15). The maximum concentration for no deposition (figure 14) is 
32 times the average concentration. 
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Figure 15. Predicted profiles for #/#m,~, Up~Or .... and Or/U r .... for the situation given in run 1 in table l, 
= 0.003 and t~- = 10.0 (Note that both the fluid and particle velocity are normalized with the maximum 

fluid velocity.) The solid line represents the particle velocity. 
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Another interesting result from the model is the predicted axial velocity profiles for the particle 
phase, The axial particle velocity component close to  the wall exceeds the gas velocity due to drift 
and dispersion, and this effect is of majorimportanee in explaining the observed high deposition 
rates in upward directed flows. Figure t6a shows the axial velzcity component for the two phases 
in an ~ a r d  directed flow, Close to the symmetry line ~3~ + = 465) the particles.lag behind the fluid 
at a v ~ t y  Which is slightly larger than the settling velocity (shown by the arrow). Close to the 
wall the particle velocity exceeds the fluid velocity. This result can be compared with the 
experimental results of Lee & Durst (1982), given in figure 16b. The agreement is acceptable, 
although the point at which there is equal gas and particle velocity is Ay + ~ 50 in the predictions 
while it is roughly 50% higher (Ay + ~ 78) in the experiments. The momentum exchange from 
particles to fluid is neglected in our calculation. Therefore the particles can not accelerate the 
near-walt fluid, as seen in the experiments. 

If the relative velocity between the phases becomes so large that particles close to the wall start 
to lag behind the fluid or even flow in the downward direction, the lift force will act outwards from 
the wall and can produce a particle-free layer close to the wall. This effect was observed by Lee 
& Durst (1982). We believe that these findings can be developed and may shed light on questions 
conceraing minimum transport velocities in vertical pneumatic transport. 

The physics outlined above can he of major importance in understanding particle precipitators 
like, for example, cyclones. The lift and turbulent migration mechanisms will contribute strongly 
to wall deposition and particle enrichment in the boundary layer. Large particle concentration 
favours agglomeration and reduces the possibility for near-wall particles to diffuse away from the 
wall and against the centrifugal r field. However, the hi-directional Coupling between the phases 
becomes of major importance in cyclone boundary layers, and should therefore be included in such 
an analysis. 

The model should in the future be developed to include full coupling between the two phases. 
Full coupling is expected to show that the deposition process will be altered if the particle volume 
fraction becomes comparable with or larger than PF/PP. 

By including mechanisms such as virtual mass, pressure terms and the Basset history force into 
the particle momentum equations, it is believed that the present model will yield interesting results 
for the deposition of particles in liquids. 

The present model is now being refined to account for particle deposition by thermophoresis. 
To date, theoretical models for thermophoresis have not been able to reproduce the unexpectedly 
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high experimental deposition rates found in the literature (Johansen & Anderson 1986). This 
discrepancy can probably be explained by turbulent drift and an increased importance of lift forces 
when particles travel quickly towards the wall and carry along some of the large U-momentum 
from the outer boundary layer. Hence, the increased near-wall relative velocity will enhance lift 
forces and deposition. As the present paper indicates, electrostatic forces might be important in 
several deposition situations and this could well be a contributing factor in thermophoretic 
deposition. 

CONCLUSION 

The presented model for particle deposition from vertical flows shows that experimental data 
on particle deposition can be explained by a turbulent migration mechanism, transversal lift forces 
and a minor electric charge on the particles. The model can represent the data for all values of 
t~-. However, in order to achieve perfect agreement with the data in the interval 0.1 < t~- < 10, it 
has been assumed that the electrical charge on the particles has increased by a factor of 10 on their 
way from the aerosol generator to the test section. 

It is shown that the deposition rate is governed by the dimensionless groups t~-, Mi, Ei, gv/u 3 
and the Reynolds number R ÷ = RuJv. It is therefore concluded that turbulent deposition data as 
function of solely t~- is an inadequate representation. 

The influence of surface roughness on the deposition process has not been investigated. 
The physics represented by the model can explain or give ideas about several two-phase flow 

phenomena which have occupied researchers during the last two or three decades. 
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